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Abstract

Whilst Local Isotropy (LI) is widely used, it is also necessary to
test its validity, especially in shear flows, characterized by large-
scale anisotropy. Important questions are whether the small
scales are isotropic and how their properties depend on large-
scale parameters (mean shear, the shear induced by a coherent
motion, the Reynolds number etc.). We focus on two families
of LI tests:
i) classical, kinematic tests, in which time-averages are com-
pared to their isotropic values. The large-scale parameters do
not appear explicitly. We only use here one example of such
tests.
ii) Phenomenological tests, which explicitly account for the
large-scale strain, as well as its associated dynamics. In flows
populated by coherent motions in which phase-averages are per-
tinent for describing the flow dynamics, we propose a Local
Isotropy (LI) criterion based on the intensity of the turbulent
strain at a given scale ~r and a particular phase φ, s(~r,φ). The
formulation is the following: ’If LI were to be valid at a vec-
torial scale~r and a phase φ, then the intensity of the turbulent
strain sφ(~r,φ) should prevail over the combined effect of the
mean shear S and of the shear S̃’ associated with the coher-
ent motion. The mathematical expression of s(~r,φ) depends on
the Laplacian of the total kinetic energy second-order structure
function. Therefore, the proposed expression allows the even-
tual anisotropy to be taken into account. The new LI criterion is
used together with data taken in the intermediate wake behind a
circular cylinder. It is highlighted that (i) when S̃φ is important,
LI only holds for scales smaller than the Taylor microscale (ii)
when S̃φ is small, the domain in which LI is valid extends up to
the largest scales.

Introduction

Local isotropy (LI) is seemingly one of the most important hy-
potheses on small-scale statistics. LI was first enunciated by
Kolmogorov in 1941 [5], and further utilized and sometimes
tested, in most of the laboratory flows. From the analytical
viewpoint, LI leads to simplified expressions of e.g. the total
kinetic energy, the dissipation rate of kinetic energy or scalar
variance, structure functions at a given scale. Simple expres-
sions of statistics are useful for the experimentalists, because of
the limited possibilities to measure all the velocity components,
as well as their spatial distribution.

Whilst LI is massively used, it is also necessary to test its va-
lidity, especially in shear flows, characterized by large-scale
anisotropy. Important questions are whether the small scales
are isotropic and which is the clear dependence of their statis-
tics on large-scale parameters (mean shear S, the shear induced
by a coherent motion S̃, the Reynolds number etc.).

Using a compilation of experimental and numerical data, Schu-
macher et al. [9] showed that LI prevails for small values of the
ratio S/Rλ (Rλ is the Taylor microscale Reynolds number). One
should expect that the magnitude of the shear will play some
role in determining how high an Rλ is required for LI to prevail.

Whereas the conclusion in [9] is optimistic quid the restoration
of LI, the analytical study of [2] demonstrated that small scales
cannot be isotropic in shear flows, independently of the values
of Rλ and S. From a general viewpoint, the assessment of LI
can only be done through specific criteria and a definitive con-
clusion about the validity of LI is unlikely to be realistic.

The aim of this study is to understand how, in the context of
shear flows, the anisotropy propagates across the scales from
the largest to the smallest, how it evolves down the scales and
finally, what the degree of anisotropy is at any given scale. To
this end, we propose a phenomenological LI criterion based on
the intensity of the turbulent strain at a given scale r.

As a first step in answering the question of what the isotropy
level is at any particular scale, we consider flows populated by
a single-scale, persistent coherent motion (hereafter, CM). A
good candidate is the cylinder wake flow, and this study focuses
entirely on this flow. The other advantage of investigating the
wake flow is that it allows to invoke phase averages. The latter
operation results in a dependence of any statistical quantities on
the phase φ characterizing the temporal dynamics of the CM.

We focus on two families of LI tests:
i) classical, kinematic tests, in which time-averages are com-
pared to their isotropic values. The large-scale parameters
(shear) does not appear explicitly. We only use here one ex-
ample of such tests.
ii) Phenomenological tests, which explicitly account for the
large-scale strain, as well as its associated dynamics.

Phenomenological LI tests. Analytical considerations

The formulation of the LI criterion is the following: ”For LI to
be valid at a vectorial scale~r, then the intensity of the strain at
that scale due to any larger scale must be much larger than the
combined effect of the mean shear S and of the coherent motion
shear, S̃”.

Mathematically, this can be expressed in terms of the following
inequality

sφ(~r,φ)� S̃φ, (1)

with
S̃φ = |〈S〉| , (2)

where 〈.〉 denotes phase averaging, |〈S〉| =
∣∣∣S+ S̃

∣∣∣ is the abso-

lute value of the phase averaged strain S = 1
2

(
∂Ui
∂x j

+
∂U j
∂xi

)
and

sφ(~r,φ) is the phase-averaged strain intensity at the scale~r and
the phase φ.

By integrating over all values of φ, the classical time averaged
quantities are obtained. Under these conditions, the latter in-
equality reads

s(~r)� S̃t , (3)

where s(~r) is the time-averaged strain intensity at the scale ~r,

and St = S̃φ.



The next step is to propose adequate expressions for the tur-
bulent strain intensity s(~r) and sφ(~r,φ). Starting from the def-
inition of the strain tensor Σ = ∇~x~u, we need to further de-
fine the tensor SΣ characterizing the strain at a scale ~r asso-
ciated with all the larger scales ([7], [1]), i.e. the quantity
SΣ(~r) ≡ ∇~x+~u+ +∇~x~u, with ~x+ = ~x+~r. By considering the
two frames to be independent ([6]), with ~U identical in the two
frames and by invoking the same decomposition as proposed by
e.g. [4] the final result is

SΣ(~r) = ∇~r∆~u. (4)

Therefore, as far as the turbulent field is concerned, the turbu-
lent strain intensity, which is the norm of SΣ, may be defined as
follows

s(~r) = (∇~r∆~u)21/2
. (5)

After some calculations and by supposing that ∆u j
∂2

∂r2
k
∆u j ≈ 0

(which is strictly true for ~r → 0), the final expression of s(~r)
for turbulent flows in which time-averages are adequate, is the
following

s(~r) =
(

1
2

L(∆ui)2
)1/2

(~r), (6)

where repeated indices indicate summation and L represents the
Laplacian operator. In flows populated by CM, in which phase-
averages are more useful, the intensity of the strain depends on
both~r and the phase φ, and it reads

sφ(~r,φ) =
(

1
2

L
〈
(∆ui)

2
〉)1/2

(~r,φ). (7)

Calculating the Laplacian of these functions requires estimates
of the velocity field in several planes, such as provided by PIV
(Particle Image Velocimetry), or, preferably, numerical simula-
tions.

It is important to note that, for LI, the Laplacian can be ex-
pressed in spherical coordinates as follows

sφ(r,φ) =
(

1
r

∂

∂r

〈
(∆ui)

2
〉
+

1
2

∂2

∂r2

〈
(∆ui)

2
〉)1/2

(r,φ). (8)

The first term on the right side of Eq. (8) has already been
proposed by [1]. This expression will be used later in this paper
in order to infer sφ and investigate phenomenological LI tests
involving phase averages.

Experiments

Measurements were performed at the CORIA, University of
Rouen, in a circular cylinder wake. The wind tunnel is of the
recirculating type with a residual turbulence level smaller than
0.2 %. The test section is 0.4× 0.4 m2 and 2.5m long and the
mean pressure gradient was adjusted to zero. The circular cylin-
der of diameter d = 10mm was placed horizontally, downstream
the contraction, spanning the whole test section. The upstream
velocity was U0 = 6.5m.s−1 corresponding to a Reynolds num-
ber based on the cylinder diameter of 4333 and a Taylor mi-
croscale Reynolds number of 70. Measurements were made
at 70d downstream of the cylinder and for transverse positions
varying between y = 0 and y = 5d.

Only the streamwise and the transverse velocity component u
and v were measured. The X-wire probe (Dantec 55P51) was
calibrated using a look-up table technique, with velocity incre-
ments of 1 m/s and angle increments of 50. The hot wires were
operated by a Dantec constant temperature bridge, with an over-
heat ratio of 0.6. Voltage signals were passed through gain cir-
cuits (SRS SIM983) and low pass filtered (SRS SIM965) at a

φ(π)

y
/
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Figure 1: The total strain 〈S〉 ·d/U0 as a function of the phase φ

and the vertical position in the wake, y/d.

frequency close to the Kolmogorov frequency. The air temper-
ature in the wind tunnel is kept constant during calibration and
measurements, thus avoiding any systematic errors which may
arise from slight variations in the mean temperature on the out-
put characteristics of the hot wires.

Phase-averaged statistics are obtained as follows. The trans-
verse velocity component v is first digitally band-pass filtered at
the Strouhal frequency, using an eighth-order Butterworth filter.
The filtering operation is applied to the Fourier transform of v
in order to avoid any phase shift. Then, the Hilbert transform
h of the filtered signal v f is obtained and the phase φ inferred

from the relation φ = arctan
(

h
v f

)
. Finally, the phase is divided

into 41 segments and phase-averaged statistics are calculated
for each class. The convergence of statistics was checked, by
reducing the number of classes, and found to be satisfactory.
By means of our method, phase-averaged quantities are calcu-
lated over the period [−π,π]. As was done by [8], the phase
is doubled up to [−2π,2π] thanks to the periodicity, in order to
enhance the visual display.

In [3], the geometrical space (location ~x in the flow) and the
separation space (turbulent scales ~r) are made independent by
considering the geometrical location specified by the midpoint
~X = 1

2

(
~x+ ~x+

)
with ~x+ =~x+~r. The same idea is applied here

to phase-conditioned structure functions for which the phase φ

is defined as the phase at the midpoint φ = φ(~X). Therefore,
each velocity component is decomposed into a triple contribu-
tion from the mean temporal average, the phase-averaged fluc-
tuation and the random/turbulent fluctuation.

Results in the wake flow

One-point statistics

One of the main advantages of using phase averages is that the
temporal dynamics associated with the presence of the CM is
highlighted. As far as the wake flow is concerned, one generally
displays statistics in the (φ,y) plane to relate the spatial organi-
zation of the kinetic energy with that of the coherent structures.
Here, we focus particularly on the coherent strain. The maxima
of the total strain are noted at phases which are −π/2+2nπ (n
is a positive integer), corresponding to the position of the sad-
dle points (Fig. 1). Also illustrated in the same figure are the
streamlines of the coherent vortices. The most visible are two
of them, rotating clockwise (the upper stream moves from left
to right). The centres of these vortices are located at y/d ≈ 1.4
and phases φ = −3π/2± 2nπ and correspond to the minimum
total strain 〈S〉. Note that on the wake centerline, the periodicity
of the total strain is π, whereas it is 2π out of the centerline.



Phase-averaging inescapably leads to a dependence on the
phase φ, and eventually on the scale r of the flow, as is the case
for structure functions at any order.

Two-point statistics

Figure 2 represents the phase-averaged second-order structure
functions for v normalized by its variance, 〈(∆v)2〉/v2, as a
function of the scale r/λu and the phase φ(π) of the coherent
motion.

r/λu

φ
(π
)

〈(∆v)2〉
/
v2(y = 0d)
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Figure 2: Values of 〈(∆v)2〉(r,φ)/v2 as a function of r/λu and
the phase φ(π) at y = 0d and Rλu

' 70.

The values of the scale-phase second-order structure func-
tions progressively increase as r keeps increasing, and reach
a maximum for r/λu ≈ 9 (this scale is equal to half the dis-
tance between two successive vortices), followed first by a
slight decrease and then by a quasi-periodic behaviour for
the largest scales. The maxima of 〈(∆v)2〉(r,φ)/v2 occur at
scales which are multiples of the first maximum. The trend
of 〈(∆v)2〉(r,φ)/v2 is uniform in φ for small scales, consistent
with the fact that only turbulent fluctuations are present at these
scales. At larger scales, where the CM is present, there is a hint
of periodicity along the φ axis (for r/λu ≈ 2), followed by a
clear periodicity at scales r/λu ≈ 9, as emphasised earlier. At
these scales, turbulent fluctuations diminish and the CM is pre-
dominant.

The dynamical aspect of 〈(∆v)2〉(r,φ) should be understood in
association with the phase variations of the total strain, Fig. 1.
A careful analysis of this figure reveals that the extrema of the
total strain S+ S̃ occur at the same phases (i.e. odd multiples of
π/2) almost independently of the spatial location y.

Local Isotropy criterion

LI is first assessed from a kinematic LI test relating phase-
conditioned second-order structure functions. In this context,
the isotropic relation between second-order structure functions
of the longitudinal velocity components and those of the trans-
verse velocity components may be written as

〈
(∆u⊥)

2
〉

iso
(r,φ) =

(
1+

r
2

∂

∂r

)〈
(∆u)2

〉
(r,φ), (9)

Note the analogy between (9) and its time-averaged counterpart

(∆u⊥)2
iso(r) =

(
1+

r
2

∂

∂r

)
(∆u)2, (10)

It is obvious that such a LI criterion at each phase of the motion
is much more restrictive than its time-averaged counterpart, Eq.
(10).

We present results for the ratio〈
(∆u⊥)2〉

iso (r,φ)/
〈
(∆u⊥)2〉(r,φ), where

〈
(∆u⊥)2〉

iso is
given by relation (9). This ratio is illustrated in Fig. 3 on the
wake centerline.

The most important remark concerns the positions at which
the maximum departure of the ratio from the isotropic value
of 1 is observed. There are points for which the value of〈
(∆v)2〉

iso (r,φ)/
〈
(∆v)2〉(r,φ) is 0.8. This occurs at phases

which are odd multiples of π/2, for which the absolute value
of the total strain is maximal, and with scales as large as ≈ 8λu.
Therefore, by considering the phase-conditioned LI test Eq. 9,
the relation between anisotropy and the coherent strain can be
emphasized.
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)

〈(∆v)2〉|iso
/
〈(∆v)2〉(y = 0d)

 

 

10
0

10
1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0.8

0.9

1

1.1

1.2

1.3

Figure 3: The dependence of
〈
(∆v)2〉

iso (r,φ)/
〈
(∆v)2〉(r,φ) on

r/λu and φ(π) at y/d = 0 and Rλu
' 70.

We now turn our attention to the phenomenological LI criterion
proposed in this study and thus sφ(r,φ)� S̃φ(φ) is tested against
experimental data. Figure 4 depicts log10(S̃φ/sφ) as functions
of r/λu and the phase φ/π at a spatial location y/d = 0 on the
centerline. A possible statement of the LI criterion is ’LI should
hold if log10(S̃φ/sφ)≤−1’. Small values of log10(S̃φ/sφ) (dark
zones) occur for small scales, whereas large values (much larger
than 10−1), as highlighted by white regions, are found mostly
at large scales. The curve for which log10(S̃φ/sφ) = −1, i.e.
’L−1’, is represented by dotted lines. This curve separates the
region of small values of r (for which LI holds), from the re-
gion of large anisotropic scales. As emphasised by this figure,
L−1 varies between 0.8λu and 8λu. The phase for which L−1
is minimum is fully correlated with the extremum values of the
coherent strain S̃φ (Fig. 1) and of the maximum of anisotropy.
At the phases for which S̃φ = 0, the influence of the coherent
motion is absent, so that LI becomes more noticeable and L−1
can increase.

Conclusion

An original LI test based on the ratio between the intensity of
the turbulent strain and that of the combined effect of the mean
and coherent shear is proposed. This test is phenomenologi-
cal and thus has an explicit dependence on the total large scale
strain which induces anisotropy.

It has been shown that (i) when S̃φ is important, LI only holds
for scales smaller than the Taylor microscale (ii) when S̃φ is
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Figure 4: Values of log10(S̃φ/sφ) as functions of r/λu and the
phase φ/π, at y/d = 0. The dotted lines represent the scale L−1.

small, the domain in which LI is valid extends up to the largest
scales.

The analytical tool we have developed opens perspectives for a
better understanding of the validity of LI in both decaying and
shear flows, as a function of the dynamical behavior of large-
scale statistics.
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